A Ureido-Thioisobutyric Acid (GW9578) Is a Subtype-Selective PPARr **Agonist with Potent Lipid-Lowering Activity**

Peter J. Brown,*,† Deborah A. Winegar,‡ Kelli D. Plunket,§ Linda B. Moore,§ Michael C. Lewis,‡ Joan G. Wilson,‡ Scott S. Sundseth,[‡] Cecilia S. Koble,[†] Zhengdong Wu,^{||} James M. Chapman,^{||} Jürgen M. Lehmann,[§] Steven A. Kliewer,[§] and Timothy M. Willson[†]

Departments of Medicinal Chemistry, Metabolic Diseases, and Molecular Endocrinology, Glaxo Wellcome Research & Development, Research Triangle Park, North Carolina 27709, and College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208

Received July 13, 1999

Hypercholesterolemia and hypertriglyceridemia are associated with an increased incidence of coronary heart $disease₁¹$ the leading cause of death in the western world. Drug therapy with fibrates, such as clofibrate (**1a**), fenofibrate (**2a**), and bezafibrate (**3**) (Chart 1), is effective at lowering serum triglycerides and low-density lipoprotein (LDL) cholesterol and raising high-density lipoprotein cholesterol in humans.² These drugs have been shown to slow the progression of atherosclerosis and reduce the number of coronary events in high-risk patients. $3-5$ Fibrates mediate their clinical effects primarily through increased clearance of circulating triglyceride-rich very low-density lipoproteins (VLDL),² leading to a reduction in the number of atherogenic particles. Apolipoprotein C-III (apoC-III) is a 79-amino acid glycoprotein which resides primarily on the surface of VLDL particles and inhibits their breakdown by lipoprotein lipase. In humans, fibrates lower serum levels of apoC-III, 6 increasing catabolism of VLDL to smaller particles which can be removed from the circulation by receptor-mediated uptake into the liver.7

The clinically used fibrate drugs were developed without knowledge of their cellular target.⁸ In 1990, Issemann and Green reported the cloning of an orphan member of the nuclear receptor superfamily, designated the peroxisome proliferator-activated receptor α (PPAR α), which was activated by the known fibrate drugs.⁹ Adding to the significance of this discovery was the identification of a PPAR binding site in the proximal promoter of the *apoC-III* gene,¹⁰ through which fibrates were shown to transrepress its expression.^{10,11} Rodent pharmacology studies support the hypothesis that fibrates mediate their lipid-lowering activity through PPAR-mediated repression of hepatic *apoC-III* expres s ion,^{11,12} which in turn leads to lower circulating levels of apoC-III and increased lipoprotein catabolism.7

Three PPAR subtypes have been identified in humans and rodents:¹³ PPAR α is found primarily in the liver; PPAR*γ*, the target for the glucose- and lipid-lowering action of the thiazolidinedione (TZD) drugs, 14,15 is found at high levels in adipose tissue and at lower levels in the spleen and liver; and PPAR*δ* (also known as PPAR*â*, NUCI, and FAAR) is expressed in most tissues. Although all three subtypes are found in the liver, the level of PPAR α expression is generally higher, and it has been widely assumed that this is the subtype through which fibrates mediate their lipid-lowering activity.2,16 However, the fibrates that are used in the clinic have not been rigorously characterized for their activities on the three PPAR subtypes. We profiled clofibric acid (**1b**), fenofibric acid (**2b**), and bezafibrate (**3**) for their PPAR agonist activity on the human and murine receptors (Table 1). In agreement with earlier reports, $9,16$ these fibric acids activated PPAR α at high micromolar concentrations. Interestingly, all three compounds showed significant cross-reactivity with the other PPAR subtypes. Clofibric acid (**1b**) and fenofibric acid (**2b**) were dual activators of PPARR and PPAR*γ*, with ~10-fold selectivity for PPARα, while bezafibrate (**3**) activated all three PPAR subtypes at comparable doses. The PPAR selectivity data is consistent with the proposal that $PPAR\alpha$ mediates the lipid-lowering activity of the fibrate drugs, $2,16$ although their cross-reactivity with PPAR*γ* may contribute to some of the observed pharmacology.17

Since the fibrates $(1-3)$ are relatively weak PPAR α agonists, we were interested in profiling compounds with increased potency and selectivity for $PPAR\alpha$ as lipid-lowering drugs. We have previously described a series of ureido-fibrates (Chart 1) with either potent PPAR activity^{18,19} or potent lipid-lowering activity in hyperlipidemic rats.20 Four of the compounds (**4**-**7**) with good in vivo activity were assayed for their PPAR agonist activity (Table 1). These ureido-fibrates (**4**-**7**) were potent agonists of murine $PPAR\alpha$. However, like fibrates (**1**-**3**), they showed only moderate levels of subtype selectivity. In addition, all four ureido-fibrates

^{*} Address correspondence to Peter J. Brown, Department of Medicinal Chemistry, NTH-M1108, Glaxo Wellcome Research & Development, P.O. Box 13398, 5 Moore Dr., Research Triangle Park, NC 27709- 3398. Tel: (919) 483-1195. Fax: (919) 315-3900. E-mail: pjb5890@ glaxowellcome.com.

[†] Department of Medicinal Chemistry. ‡ Department of Metabolic Diseases.

[§] Department of Molecular Endocrinology.

[|] College of Pharmacy.

Table 1. PPAR and Lipid-Lowering Activity of Fibrates

^a Compound structures in Chart 1. *^b* Compounds were assayed for agonist activity on PPAR-GAL4 chimeric receptors in transiently transfected CV-1 cells as described (refs 14, 15, and 19); EC_{50} = the concentration of test compound that gave 50% of the maximal reporter activity \pm 10%, *n* = 4-6. All compounds were full agonists unless indicated; >300 = agonist activity observed only at 300 μ M.; ia = inactive at 300 µM.; nd = not determined. ^{*c*} Lipid-lowering activity in male Sprague-Dawley rats fed a 1% cholesterol, 0.5% cholic acid diet. Animals ($n = 6$ /group) were dosed orally once daily for 3 days with either vehicle (5% bicarbonate) or doses of test compound ranging from 0.1 to 50 mg/kg as described (ref 20). Fenofibrate (**2a**) and the dicyclohexylamine salt of **8** were used for the in vivo studies; all other compounds $(3-7)$ were the free acids. MED = minimum effective dose producing a $40-60%$ decrease in serum TLDL cholesterol relative to vehicle-treated controls, where TLDL cholesterol = $(VLDL + LDL)$ cholesterol.

 $(4-7)$ were less potent as activators of human PPAR α compared to murine $PPAR\alpha$, further eroding their $PPAR\alpha$ selectivity on the human receptors. Ureidofibrate **6** was the only analogue that showed moderate $PPAR\alpha$ selectivity on both the murine and human receptors. Ureido-fibrates **5** and **7** were moderately $PPAR\alpha$ -selective on the murine receptors, but dual PPARR/PPAR*^γ* agonists on the human receptors. Ureido-fibrate 4 was more potent on PPAR_γ than PPAR_α, especially on the human receptors where its profile is comparable to that of the TZD antidiabetic drugs.13

Previous studies¹⁹ have shown that ureido-fibrate analogues (Chart 1, $X = 0$), with modified urea substituents generated by solid-phase parallel synthesis,²¹ do not show increased $PPAR\alpha$ selectivity. However, through conventional analogue synthesis we discovered that modification of the fibrate headgroup to a thioisobutyric acid (TiBA; Chart 1, $X = S$) increased PPAR α activity relative to PPAR*γ* and PPAR*δ* (Table 1, **7** vs **8**). Ureido-TiBA **8** (GW9578) is a potent $PPAR\alpha$ agonist with 300-fold selectivity on the murine receptors and 20-fold selectivity on the human receptors. Scheme 1 shows the synthesis of the ureido-TiBA **8**. Briefly, 4-bromothiophenol was alkylated with *tert*-butyl bromoisobutyrate to give the bromo ester **9** in good yield. Heck reaction with vinylphthalimide and hydrogenation of the olefin gave intermediate **10**. Following phthalimide deprotection, the resulting primary amine was coupled with heptanoic acid to afford the amide **11**. Borane reduction furnished the secondary amine which was treated with 2,4-difluorophenyl isocyanate to give the ureido-TiBA **8** following TFA cleavage of the *tert*butyl ester.

To assess the potential utility of **8** as a lipid-lowering drug, its activity was compared to that of fibrates **²**-**⁷** in the cholesterol/cholic acid-fed rat.²⁰ Reduction of total low-density lipoprotein (TLDL) cholesterol in this model has been shown to correlate with the antihyperlipidemic activity of fibrates in humans.²² In this model,²⁰ fenofibrate (**2a**) and bezafibrate (**3**) produced a 40-60% decrease in TLDL cholesterol only at the highest dose tested, while the ureido-fibrates **⁴**-**⁷** and ureido-TiBA **⁸** were active at 50-500-fold lower doses (Table 1). Several lines of evidence suggest that the lipid-lowering activity of $\boldsymbol{8}$ is due to its potent $PPAR\alpha$ activity. First, the analogues 5 , 7 , and 8 with the best PPAR α activity **Scheme 1***^a*

^a Reagents: (i) BrC(Me)₂CO₂tBu, KOH, EtOH (80%); (ii) vinylphthalimide, Pd(OAc)₂, DIEA, (o-Tol)₃P, MeCN (84%); (iii) Wilkinson's catalyst, EtOH, $\rm H_2$ (91%); (iv) hydrazine, EtOH (86%); (v) heptanoic acid, DIC, HOBT (66%); (vi) $1 \text{ M } BH_3$ ·THF (95%); (vii) 2,4-difluorophenyl isocyanate, CH_2Cl_2 (83%); (viii) 50% TFA/ $CH₂Cl₂$ (90%).

were active at doses as low as $0.1-0.2$ mg/kg. Second, the ureido-fibrate **4**, which possesses potent activity on PPAR_γ in addition to PPARα, did not perform significantly better than analogues **⁵**-**8**. Third, comparison of the in vitro murine $PPAR\alpha$ activity with the in vivo potency of **²**-**⁸** provided a strong correlation (Figure 1). Similar associations could not be drawn with either PPAR*γ* or PPAR*δ* (Table 1).

Finally, to confirm that the observed lipid-lowering activity in the cholesterol/cholic acid-fed rat was mediated through a clinically relevant mechanism, 2 the effects of fenofibrate (**2a**) and ureido-TiBA **8** on serum apoC-III and TLDL cholesterol were determined (Figure 2). A dose-dependent reduction in TLDL cholesterol was observed with both compounds, reaching 50% lowering at 30 mg/kg fenofibrate (**2a**) (Figure 2a) and 60%

Figure 1. Correlation between PPARa and lipid-lowering activity.

Figure 2. Effects of fenofibrate (**2a**) and ureido-TiBA **8** on serum apoC-III and TLDL cholesterol. Male Sprague-Dawley rats ($n = 6$ /group) fed a 1% cholesterol, 0.5% cholic acid diet were dosed orally twice daily for 4 days with either vehicle (0.5% methylcellulose) or increasing doses of fenofibrate (**2a**) or the dicyclohexylamine salt of **8**. Serum TLDL cholesterol was determined as described (ref 20). Serum apoC-III was quantitated by a noncompetitive ELISA using a polyclonal goat antibody against rat apoC-III. Data are expressed as percent reduction compared to vehicle-treated animals \pm standard error.

lowering at 1.0 mg/kg **8** (Figure 2b). Analysis of serum apoC-III levels revealed a dose-dependent decrease with both compounds, reaching a maximal reduction of ∼30% with fenofibrate (**2a**) and ∼80% with **8**. Thus, activation of PPAR α in the cholesterol/cholic acid-fed rat results in changes in serum apoC-III which are consistent with the pharmacology of fibrates in humans.⁶ The increased efficacy of ureido-TiBA **8** compared to fenofibrate (**2a**) for reduction of serum apoC-III is likely due to its increased potency on PPARa.

In summary, the ureido-TiBA **8** is the most potent $PPAR\alpha$ agonist reported to date. It exhibits excellent subtype selectivity on the murine receptors and moderate selectivity on the human receptors. In addition to its lipid-lowering activity, **8** prevents weight gain and the development of hyperinsulinemia in insulin-resistant rats. 23 Since hyperlipidemia, obesity, and insulin resistance are independent risk factors for coronary heart disease,¹ our results suggest that development of potent human PPAR_{a-}selective agonists may lead to improved drugs for primary prevention of cardiovascular mortality.24

Acknowledgment. We thank Roy Hawke and Jo Salisbury for in vivo data on **²**-**7**, Peter Dolphin (Dalhousie University, Canada) for the polyclonal rat apoC-III antibody, and Dr. Bart Staels (Institute Pasteur de Lille) for communicating data prior to publication.

Supporting Information Available: Detailed experimental procedures for the synthesis of **8**. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Grundy, S. M. Hypertriglyceridemia, Atherogenic Dyslipidemia, and the Metabolic Syndrome. *Am. J. Cardiol.* **¹⁹⁹⁸**, *⁸¹*, 18B-25B.
- (2) Staels, B.; Dallongeville, J.; Auwerx, J.; Schoonjans, K.; Leitersdorf, E.; Fruchart, J.-C. Mechanism of Action of Fibrates on Lipid and Lipoprotein Metabolism. *Circulation* **¹⁹⁹⁸**, *⁹⁸*, 2088- 2093.
- (3) Oliver, M. F.; Heady, J. A.; Morris, J. N.; Cooper, J. WHO Cooperative Trial on the Primary Prevention of Ischemic Heart Disease with Clofibrate to Lower Serum Cholesterol: Final Mortality Follow-up. *Lancet* **¹⁹⁸⁴**, *²*, 600-604. (4) Ericsson, C.-G.; Nilsson, J.; Grip, L.; Svane, B.; Hamsten, A.
- Effect of Bezafibrate Treatment over Five Years on Coronary Plaques Causing 20% to 50% Diameter Narrowing (the Bezafibrate Coronary Atherosclerosis Intervention Trial [BECAIT]). *Am. J. Cardiol.* **¹⁹⁹⁷**, *⁸⁰*, 1125-1129.
- (5) Ruotolo, G.; Ericsson, C.-G.; Tettamanti, C.; Karpe, F.; Grip, L.; Svane, B.; Nilsson, J.; De Faire, U.; Hamsten, A. Treatment Effects on Serum Lipoprotein Lipids, Apolipoproteins and Low-Density Lipoprotein Particle Size and Relationships of Lipoprotein Variables to Progression of Coronary Artery Disease in the Bezafibrate Coronary Atherosclerosis Intervention Trial (BECAIT). *J. Am. Coll. Cardiol.* **¹⁹⁹⁸**, *³²*, 1648-1656.
- (6) Malmendier, C. L.; Lontie, J. F.; Delcroix, C.; Dubois, D. Y.; Magot, T.; De Roy, L. Apolipoproteins C-II and C-III Metabolism in Hypertriglyceridemic Patients. Effect of a Drastic Triglyceride Reduction by Combined Diet Restriction and Fenofibrate Administration. *Atherosclerosis* **¹⁹⁸⁹**, *⁷⁷*, 139-149.
- (7) Shepherd, J. Lipoprotein Metabolism: an Overview. *Drugs* **1994**, $47, \overline{1} - 10.$
- (8) Gaw, A.; Packard, C. J.; Shepherd, J. Fibrates. *Handbk. Exp. Pharmacol.* **¹⁹⁹⁴**, *¹⁰⁹*, 325-348.
- Issemann, I.; Green, S. Activation of a Member of the Steroid Hormone Receptor Superfamily by Peroxisome Proliferators.
Nature 1990, 347, 645-650.
- *Nature* **¹⁹⁹⁰**, *³⁴⁷*, 645-650. (10) Hertz, R.; Bishara-Shieban, J.; Bar-Tana, J. Mode of Action of Peroxisome Proliferators as Hypolipidemic Drugs. Suppression of Apolipoprotein C-III. *J. Biol. Chem.* **¹⁹⁹⁵**, *²⁷⁰*, 13470-13475.
- (11) Staels, B.; Vu-Dac, N.; Kosykh, V. A.; Saladin, R.; Fruchart, J.- C.; Dallongeville, J.; Auwerx, J. Fibrates Downregulate Apolipoprotein C-III Expression Independent of Induction of Peroxisomal Acyl Coenzyme A oxidase: a Potential Mechanism for the Hypolipidemic Action of Fibrates. *J. Clin. Invest.* **1995**, *95*, ⁷⁰⁵-712. (12) Haubenwallner, S.; Essenburg, A. D.; Barnett, B. C.; Pape, M.
- E.; DeMattos, R. B.; Krause, B. R.; Minton, L. L.; Auerbach, B. J.; Newton, R. S.; Leff, T.; Bisgaier, C. L. Hypolipidemic Activity of Select Fibrates Correlates to Changes in Hepatic Apolipoprotein C-III Expression: a Potential Physiologic Basis for their Mode of Action. *J. Lipid Res.* **¹⁹⁹⁵**, *³⁶*, 2541-2551. (13) Willson, T. M.; Wahli, W. Peroxisome Proliferator-activated
- Receptor Agonists. *Curr. Opin. Chem. Biol.* **¹⁹⁹⁷**, *¹*, 235-241.
- (14) Lehmann, J. M.; Moore, L. B.; Smith-Oliver, T. A.; Wilkison, W. O.; Willson, T. M.; Kliewer, S. A. An Antidiabetic Thiazolidinedione is a High Affinity Ligand for Peroxisome Proliferatoractivated Receptor *^γ* (PPAR*γ*). *J. Biol. Chem.* **¹⁹⁹⁵**, *²⁷⁰*, 12953- 12956.
- (15) Willson, T. M.; Cobb, J. E.; Cowan, D. J.; Wiethe, R. W.; Correa, I. D.; Prakash, S. R.; Beck, K. D.; Moore, L. B.; Kliewer, S. A.; Lehmann, J. M. The Structure-Activity Relationship between Peroxisome Proliferator-Activated Receptor *γ* Agonism and the Anti-Hyperglycemic Activity of Thiazolidinediones. *J. Med. Chem.* **¹⁹⁹⁶**, *³⁹*, 665-668.
- (16) Schoonjans, K.; Staels, B.; Auwerx, J. Role of the Peroxisome Proliferator-activated Receptor (PPAR) in Mediating the Effects of Fibrates and Fatty Acids on Gene Expression. *J. Lipid Res.* **¹⁹⁹⁶**, *³⁷*, 907-925.
- (17) Matsui, H.; Okumura, K.; Kawakami, K.; Hibino, M. Improved Insulin Sensitivity by Bezafibrate in Rats. Relationship to Fatty Acid Composition of Skeletal-muscle Triglycerides. *Diabetes* **¹⁹⁹⁷**, *⁴⁶*, 348-353.
- (18) Kliewer, S. A.; Sundseth, S. S.; Jones, S. A.; Brown, P. J.; Wisely, G. B.; Koble, C.; Devchand, P.; Wahli, W.; Willson, T. M.; Lenhard, J. M.; Lehmann, J. M. Fatty Acids and Eicosanoids Regulate Gene Expression through Direct Interactions with Peroxisome Proliferator-activated Receptors α and *γ. Proc. Natl.*
Acad. Sci. U.S.A. **1997**, *94*, 4318–4323.
- Acad. Sci. U.S.A. **1997**, 94, 4318–4323.

(19) Brown, P. J.; Smith-Oliver, T. A.; Charifson, P. S.; Tomkinson, N. C. O.; Fivush, A. M.; Sternbach, D. D.; Wade, L. E.; Orband-

Miller, L.; Parks, D. J.; Blanchard, S. G.; Kl Proliferator-activated Receptor Ligands from a Biased Chemical
- Library. *Chem. Biol.* **¹⁹⁹⁷**, *⁴*, 909-918. (20) Hawke, R. L.; Chapman, J. M.; Winegar, D. A.; Salisbury, J. A.; Welch, R. M.; Brown, A.; Franzmann, K. W.; Sigel, C. Potent Hypocholesterolemic Activity of Novel Ureido Phenoxyisobutyrates Correlates with their Intrinsic Fibrate Potency and not with their ACAT Inhibitory Activity. *J. Lipid Res.* **1997**, *38*, ¹¹⁸⁹-1203.
- (21) Brown, P. J.; Hurley, K. P.; Stuart, L. W.; Willson, T. M. Generation of Secondary Alkylamines on Solid Support by Borane Reduction. Application to the Parallel Synthesis of PPAR ligands. *Synthesis* **¹⁹⁹⁷**, 778-782.
- (22) Newton, R. S.; Krause, B. R. Mechanisms of Action of Gemfibrozil: Comparison of Studies in the Rat to Clinical Efficacy. In *Pharmacological Control of Hyperlipidaemia*; Fears, R., Ed.; J. R. Prous: Barcelona, 1986; pp 171-186. (23) (a) Torra, I. P.; Gervois, P.; Staels, B. Peroxisome Proliferator-
- activated Receptor Alpha in Metabolic Disease, Inflammation, Atherosclerosis and Aging. *Curr. Opin. Lipidol.* **¹⁹⁹⁹**, *¹⁰*, 151- 159. (b) Staels, B.; Winegar, D. A. Unpublished results.
- (24) The solid-phase chemistry developed for the ureido-fibrates (ref 21) can be used to optimize potency and selectivity of the ureido-TiBAs for human PPARR. Stuart, L. W.; Brown, P. J.; Willson, T. M. Unpublished results.

JM9903601